甚高能宇宙伽馬輻射

甚高能宇宙伽馬輻射

图书基本信息
出版时间:2012-12
出版社:北京大學出版社
作者:阿哈隆尼安
页数:495
书名:甚高能宇宙伽馬輻射
封面图片
甚高能宇宙伽馬輻射

内容概要
  《中外物理学精品书系·引进系列(7)·甚高能宇宙伽马辐射:研究极端宇宙的关键窗口(影印版)》综述了宇宙伽马辐射这一现象的实验观测结果、起源的解释和蕴含的信息。其中主要探讨了宇宙射线的产生,相对论性射束的物理和天体物理,以及观测伽马射线宇宙学等研究方向。具体包括银河系内和银河系外的宇宙射线的起源、极端天体物理条件(比如正在吸积的黑洞附近)下的加速和辐射过程、伽马射线暴等瞬态现象,以及与之相关的宇宙学课题等。《中外物理学精品书系·引进系列(7)·甚高能宇宙伽马辐射:研究极端宇宙的关键窗口(影印版)》适合天文学、宇宙学、粒子物理等领域的研究者和研究生阅读。
作者简介
作者︰(德國)阿哈隆尼安(Aharonian F.A.)
书籍目录
Preface 1. Introduction 1.1 "The Last Electromagnetic Window" 1.2 Energy Domains of Gamma Ray Astronomy 1.3 Gamma Ray Astronomy: A Discipline in Its Own Right 2. Status of the Field 2.1 Low Energy Gamma Ray Sources 2.1.1 The COMPTEL source catalog 2.2 High Energy Gamma Ray Sources 2.2.1 GeV blazars 2.2.2 GeV pulsars 2.2.3 Unidentified EGRET sources 2.3 The Status of Ground-Based Gamma Ray Astronomy  2.3.1 Brief historical review 2.3.2 Reported TeV sources 2.3.2.1 The Crab Nebula 2.3.2.2 Other plerions 2.3.2.3 Gamma ray pulsars 2.3.2.4 Gamma rays from supernova remnants  2.3.2.5 Other galactic sources 2.3.2.6 TeV blazars 2.3.2.7 Other extragalactic objects 2.3.3 Next generation of IACT arrays Very High Energy Cosmic Gamma Radiation 2.3.3.1 Atmospheric Cherenkov radiation 2.3.3.2 Stereoscopic detection of Cherenkov images 2.3.3.3 IACT arrays 2.3.3.4 Sub-10 GeV ground based detectors? 2.3.3.5 Large field-of-view detectors 2.3.3.6 IACT arrays for probing PeV γ-rays  3. Gamma Ray Production and Absorption Mechanisms 3.1 Interactions with Matter 3.1.1 Electron bremsstrahlung and pair-production  3.1.2 Electron-positron annihilation 3.1.3 Gamma rays produced by relativistic protons  3.1.3.1 γ-decay gamma rays 3.1.3.2 Nuclear gamma ray line emission  3.2 Interactions with Photon Fields 3.2.1 Inverse Compton scattering 3.2.2 Photon-photon pair production 3.2.3 Interactions of hadrons with radiation fields 3.3 Interactions with Magnetic Fields 3.3.1 Synchrotron radiation and pair-production  3.3.2 Synchrotron radiation of protons 3.4 Relativistic Electron-Photon Cascades 4. Gamma Rays and Origin of Galactic Cosmic Rays 4.1 Origin of Galactic Cosmic Rays: General Remarks  4.1.1 What do we know about Cosmic Rays? 4.1.2 What we do not know about Cosmic Rays?  4.1.3 Common beliefs and "nasty" problems 4.1.4 Searching for sites of production of GCRs  4.2 Giant Molecular Clouds as Tracers of Cosmic Ray  4.2.1 Proton fluxes in the ISM near the accelerator  4.2.1.1 Impulsive source 4.2.1.2 Continuous source 4.2.1.3 The case of dense gas regions 4.2.2 Gamma rays from a cloud near the accelerator 4.2.3 Accelerator inside the cloud 4.2.4 On the level of the "sea" of galactic cosmic rays 4.3 Probing the Sources of VHE CR Electrons 4.3.1 Distributions of VHE electrons 4.3.2 Extended regions of IC gamma radiation  4.4 Diffuse Radiation from the Galactic Disk 4.4.1 CR spectra in the inner Galaxy 4.4.2 Diffuse radiation associated with cosmic ray electrons 4.4.2.1 IC gamma rays 4.4.2.2 Electron bremsstrahlung 4.4.2.3 Annihilation of CR positrons in flight 4.4.3 Gamma rays of nucleonic origin 4.4.4 Overall gamma ray fluxes 4.4.5 Probing the diffuse γ-ray background on small scales 4.4.6 Concluding remarks 5. Gamma Ray Visibility of Supernova Remnants 5.1 Gamma Rays as a Diagnostic Tool 5.2 Inverse Compton Versus π0-Decay Gamma Rays  5.3 Synchrotron X-ray Emission of SNRs 5.4 TeV Gamma Radiation of SN 1006 and Similar SNR 5.4.1 Inverse Compton models of TeV emission  5.4.2 Hadronic origin of TeV emission? 5.4.3 Distinct features of electronic and hadronic models 5.4.4 Concluding remarks 5.5 Molecular Clouds Overtaken by SNRs 5.5.1 Bremsstrahlung X-rays from γ Cygni 5.5.2 The case of RX J1713.7-3946 5.6 A Special Case: Gamma Rays from Cassiopeia A  5.7 "PeV SNRs"  6. Pulsars, Pulsar Winds, Plerions 6.1 Magnetospheric Gamma Rays 6.1.1 Polar cap versus outer gap models 6.1.2 Magnetospheric TeV gamma rays? 6.2 Gamma Rays from Unshocked Pulsar Winds 6.2.1 Characteristics of the KED wind 6.2.2 The ejection rate and the particle spectrum  6.2.3 IC Radiation of the pulsar wind in Crab 6.2.4 Gamma rays from winds of PSR B1706-44 and Vela? 6.2.5 IC γ-rays from the binary pulsar PSR B1259-63 6.3 Gamma Rays from Pulsar Driven Nebulae 6.3.1 Broad-band nonthermal radiation of the Crab Nebula 6.3.1.1 Synchrotron and IC radiation 6.3.1.2 Second High Energy Synchrotron Component 6.3.1.3 Bremsstrahlung and π0-decay gamma rays? 6.3.1.4 The objectives of future gamma ray studies 6.4 High Energy Gamma Rays from Other Plerions 6.4.1 Time-evolution of electrons 6.4.2 Target photon fields 6.4.3 Effects of B-field, electron energy, and pulsar age  6.4.4 Synchrotron and IC nebulae around PSR B1706-44 7. Gamma Rays Expected from Microquasars 7.1 Do We Expect Gamma Rays from X-Ray Binaries?  7.2 Nonthermal Phenomena in Microquasars 7.3 Modelling of Radio Flares of GRS 1915+105 7.4 Expected Gamma Ray Fluxes 7.5 Searching for Gamma Ray Signals from Microquasars  7.6 The Case of Microblazars 7.7 Ultraluminous Sources as Microblazars? 7.8 Persistent Gamma Ray Emission from Extended Lobes 8. Large Scale Jets of Radio Galaxies and Quasars 8.1 Synchrotron and IC Models of Large Scale AGN Jets  …… 9. Nonthermal Phenomena in Clusters of Galaxies 10. TeV Blazars and Cosmic Background Radiation 11. High Energy Gamma Rays - Carriers of Unique Cosmological Information Appendix A Spherically symmetric diffusion from a single source Appendix B Evolution of relativistic electrons in an expandid magnetised medium B.1 Kinetic equation B.2 Time-independent energy losses B.3 Expanding cloud Bibliography Index

章节摘录
版權頁︰   插圖︰   On theoretical grounds, the diffusive shock acceleration model faces sev-eral challenges or "nasty problems" (Drury et al., 2001) like the "injectionproblem" and the "maximum energy problem", recently critically reviewedby Kirk and Dendy (2001), Drury (2001) and Malkov and Drury (2001).Diffusive shock acceleration requires particles with energy at least severaltimes larger than the thermal energy of the plasma, and it is not yet clearhow to get particles from the thermal pool accelerated to supra-thermalenergies. Recent theoretical progress in this direction (e.g. Malkov andVSlk, 1995; Dieckmann et al., 2000) provides optimism that eventually theinjection problem will be resolved, most likely through extensive numericalsimulations (Kirk and Dendy, 2001). The problem of the maximum achievable energy problem is an old oneand has a vital implication for the SNR paradigm of GCRs. In diffusiveshock acceleration theory, the maximum energy of particles is achievedduring the so-called free-expansion phase which, however, does not lastlong enough to allow acceleration of particles up to the highly desired point,the knee around 1015 eV. Therefore, violation of the so-called "upper limit"of Lagage and Cesarsky (1983), which, for the standard SNR parameters,the shock speed, duration of the free-expansion phase, and the ambientmagnetic field, cannot significantly exceed 1014 eV, remains as one of thehighest priorities of current theoretical studies. A promising way has recently been suggested by Lucek and Bell (2000).They showed that cosmic ray streaming drives large-amplitude Alfv nicwaves which may amplify the magnetic field non-linearly to many timesthe pre-shock value. Thus, the cosmic rays themselves provide the fieldnecessary for their effective acceleration! The increased magnetic field re-duces the acceleration time, and correspondingly increases the maximumparticle energies to 1015 eV and even beyond.
编辑推荐
《甚高能宇宙伽馬輻射:研究極端宇宙的關鍵窗口(影印版)》適合天文學、宇宙學、粒子物理等領域的研究者和研究生閱讀。


下载链接

甚高能宇宙伽馬輻射下載

评论与打分
  •     在當當網能買到這等專業書籍,類牛滿面!