連續力學中的數學模型

連續力學中的數學模型

图书基本信息
出版时间:2003-9
出版社:北京世圖
作者:R.Temam,A.Miranville
页数:288
书名:連續力學中的數學模型
封面图片
連續力學中的數學模型

内容概要
At a time when mathematical modeling is pervading many areas of science and master's degree programs in industrial mathematics are being initiated in many universities, this book is intended as an introduction to continuum mechanics and mathematical modeling. One of the aims of the book is to reduce the gap slightly between mathematics and this area of natural science - a gap that is usually due to the language barrier and to the differences in thinking and reasoning. This book is written in a style suitable for mathematicians and adapted to their training. We have tried to remain very close to physics and to mathematics at the same time by making, in particular, a clear separation between what is assumed and what is proved. As it is, the book may appeal as well to a broader audience, such as engineers who would like to have a different perspective on the field, relying less on physical intuition, and advanced researchers who would like an introduction to a field new to them.
书籍目录
IntroductionA Few Words About NotationsPART ONE. FUNDAMENTAL CONCEPTS IN CONTINUUM MECHANICS 1 Describing the Motion of a System: Geometry and Kinematics  1.1 Deformations  1.2 Motion and Its Observation Kinematics  1.3 Description of the Motion of a System: Eulerian and Lagrangian Derivatives  1.4 Velocity Field of a Rigid Body: Helicoidal Vector Fields  1.5 Differentiation of a Volume Integral Depending on a Parameter 2 The Fundamental Law of Dynamics  2.1 The Concept of Mass  2.2 Forces  2.3 The Fundamental Law of Dynamics and Its First Consequences  2.4 Application to Systems of Material Points and to Rigid Bodies  2.5 Galilean Frames: The Fundamental Law of Dynamics Expressed in a Non-Galilean Frame 3 The Cauchy Stress Tensor - Applications   3.1 Hypotheses on the Cohesion Forces  3.2 The Cauchy Stress Tensor  3.3 General Equations of Motion  3.4 Symmetry of the Stress Tensor 4 Real and Virtual Powers  4.1 Study of a System of Material Points  4.2 General Material Systems: Rigidifying Velocities  4.3 Virtual Power of the Cohesion Forces: The General Case  4.4 Real Power: The Kinetic Energy Theorem 5 Deformation Tensor, Deformation Rate Tensor,Constitutive Laws  5.1 Further Properties of Deformations  5.2 The Deformation Rate Tensor  5.3 Introduction to Rheology: The Constitutive Laws 6 Energy Equations and Shock Equations  6.1 Heat and Energy  6.2 Shocks and the Rankine-Hugoniot RelationsPART TWO. PHYSICS OF FLUIDS 7 General Properties of Newtonian Fluids  7.1 General Equations of Fluid Mechanics  7.2 Statics of Fluids  7.3 Remark on the Energy of a Fluid 8 Flows of Inviscid Fluids  8.1 GeneralTheorems  8.2 Plane Irrotational Flows  8.3 Transsonic Flows  8.4 Linear Acoustics 9 Viscous Fluids and Thermohydraulics  9.1 Equations of Viscous Incompressible Fluids  9.2 Simple Flows of Viscous Incompressible Fluids  9.3 Thermohydraulics  9.4 Equations in Nondimensional Form: Similarities  9.5 Notions of Stability and Turbulence  9.6 Notion of Boundary Layer 10 Magnetohydrodynamics and Inertial Confinement of Plasmas  10.1 The Maxwell Equations and Electromagnetism  10.2 Magnetohydrodynamics  10.3 The Tokamak Machine 11 Combustion  11.1 Equations for Mixtures of Fluids  11.2 Equations of Chemical Kinetics  11.3 The Equations of Combustion  11.4 Stefan-Maxwell Equations  11.5 A Simplified Problem: The Two-Species Model 12 Equations of the Atmosphere and of the Ocean  12.1 Preliminaries  12.2 Primitive Equations of the Atmosphere  12.3 Primitive Equations of the Ocean  12.4 Chemistry of the Atmosphere and the Ocean  Appendix: The Differential Operators in Spherical CoordinatesPART THREE. SOLID MECHANICS 13 The General Equations of Linear Elasticity  13.1 Back to the Stress-Strain Law of Linear Elasticity:  The Elasticity Coefficients of a Material  13.2 Boundary Value Problems in Linear Elasticity:The Linearization Principle  13.3 Other Equations  13.4 The Limit of Elasticity Criteria 14 Classical Problems of Elastostatics  14.1 Longitudinal Traction-Compression of a Cylindrical Bar  14.2 Uniform Compression of an Arbitrary Body……15 Energy Theorems - Duality: Variational Formulations16 Introduction to Nonlinear Constitutive Laws and to Homogenization17 Linear Wave Equations in Mechanics18 The Soliton Equation: The Korteweg-de Vries Equation19 The Nonlinear Schrodinger EquationAppendix The Partial Differential Equations of MechanicsReferencesIndex



下载链接

連續力學中的數學模型下載

评论与打分
    暂无评论