計算物理學導論

計算物理學導論

图书基本信息
出版时间:2011-6
出版社:世界圖書出版公司
作者:龐濤
页数:385
书名:計算物理學導論
封面图片
計算物理學導論
内容概要
  《計算物理學導論(第2版)》是一部本科生和低年級研究生學習計算物理的教程。這是第二版,將第一版做了全面的更新和修訂,改進後的課程不僅提供了學習計算物理學的基本方法,也全面介紹了計算科學領域的最新進展。書中講述了許多具體例子,包括現代物理和相關領域的數值方法實踐計算。每章末有練習題。本書不僅是一部教程,更是相關計算領域的的一本很好的參考書。
目次︰緒論;函數逼近;數值微積分;基礎數值法;常微分方程;矩陣數值法;光譜分析法;偏微分方程;分子動力學模擬;模擬連續系統;蒙特卡羅模擬;遺傳算法和程序;數值重正化。
  
作者简介
作者︰(美國)龐濤 (Tao Pang)
书籍目录
preface to first edition
preface
acknowledgments
1 introduction
 1.1 computation and science
 1.2 the emergence of modem computers
 1.3 computer algorithms and languages
 exercises
2 approximation of a function
 2.1 interpolation
 2.2 least-squares approximation
 2.3 the millikan experiment
 2.4 spline approximation
 2.5 random-number generators
 exercises
3 numerical calculus
 3.1 numerical differentiation
 3.2 numerical integration
 3.3 roots of an equation
 3.4 extremes of a function
 3.5 classical scattering
 exercises
4 ordinary differential equations
 4.1 initial-value problems
 4.2 the euler and picard methods
 4.3 predictor-corrector methods
 4.4 the runge-kutta method
 4.5 chaotic dynamics of a driven pendulum
 4.6 boundary-value and eigenvalue problems
 4.7 the shooting method
 4.8 linear equations and the sturm-liouville problem
 4.9 the one-dimensional schr6dinger equation
 exercises
5 numerical methods for matrices
 5.1 matrices in physics
 5.2 basic matrix operations
 5.3 linear equation systems
 5.4 zeros and extremes of multivariable functions
 5.5 eigenvalue problems
 5.6 the faddeev-leverrier method
 5.7 complex zeros of a polynomial
 5.8 electronic structures of atoms
 5.9 the lanczos algorithm and the many-body problem
 5.10 random matrices
 exercises
6 spectral analysis
 6.1 fourier analysis and orthogonal functions
 6.2 discrete fourier transform
 6.3 fast fourier transform
 6.4 power spectrum of a driven pendulum
 6.5 fourier transform in higher dimensions
 6.6 wavelet analysis
 6.7 discrete wavelet transform
 6.8 special functions
 6.9 gaussian quadratures
 exercises
7 partial differential equations
 7.1 partial differential equations in physics
 7.2 separation of variables
 7.3 discretization of the equation
 7.4 the matrix method for difference equations
 7.5 the relaxation method
 7.6 groundwater dynamics
 7.7 initial-value problems
 7.8 temperature field of a nuclear waste rod
 exercises
8 molecular dynamics simulations
 8.1 general behavior of a classical system
 8.2 basic methods for many-body systems
 8.3 the verlet algorithm
 8.4 structure of atomic clusters
 8.5 the gear predictor-corrector method
 8.6 constant pressure, temperature, and bond length
 8.7 structure and dynamics of real materials
 8.8 ab initio molecular dynamics
 exercises
9 modeling continuous systems
 9.1 hydrodynamic equations
 9.2 the basic finite element method
 9.3 the ritz variational method
 9.4 higher-dimensional systems
 9.5 the finite element method for nonlinear equations
 9.6 the particle-in-cell method
 9.7 hydrodynamics and magnetohydrodynamics
 9.8 the lattice boltzmann method
 exercises
10 monte carlo simulations
 10.1 sampling and integration
 10.2 the metropolis algorithm
 10.3 applications in statistical physics
 10.4 critical slowing down and block algorithms
 10.5 variational quantum monte carlo simulations
 10.6 green's function monte carlo simulations
 10.7 two-dimensional electron gas
 10.8 path-integral monte carlo simulations
 10.9 quantum lattice models
 exercises
11 genetic algorithm and programming
 11.1 basic elements of a genetic algorithm
 11.2 the thomson problem
 11.3 continuous genetic algorithm
 11.4 other applications
 11.5 genetic programming
 exercises
12 numerical renormalization
 12.1 the scaling concept
 12.2 renormalization transform
 12.3 critical phenomena: the ising model
 12.4 renormalization with monte carlo simulation
 12.5 crossover: the kondo problem
 12.6 quantum lattice renormalization
 12.7 density matrix renormalization
 exercises
references
index
章节摘录
版權頁︰插圖︰The basic idea behind a genetic algorithm is to follow the biological processof evolution in selecting the path to reach an optimal configuration of a givencomplex system. For exampie, for an interacting many-body system, the equilib-rium is reached by moving the system to the configuration that is at the globalminimum on its potential energy surface. This is single-objective optimization,which can be described mathematically as searching for the global minimum ofa multivariable function. Multiobjective optimization involvesmore than one equation, for example, a search for the minima of gk Both types ofoptimization can involve some constraints.We limit ourselves to single-objective optimization here. For a detailed dis-cussion on multi-objective optimization using the genetic algorithm, see Deb.
编辑推荐
《計算物理學導論(第2版)》是由世界圖書出版公司出版的。
下载链接

計算物理學導論下載

评论与打分
  •     作者的主頁︰****://***.physics.unlv.edu/~pang/
    里面的程序可以在下面的網址下到︰****://***.physics.unlv.edu/~pang/cp.html
    分子動力學,蒙卡,和遺傳算法都有介紹,並給出程序來實戰,搞計算物理的可以好好讀讀。
  •     適合入門,但比較一般,配合一個簡明的數值分析看最好
  •     非常好的書,對我非常有用
  •     希望更多的書通過這種方式影印過了,價格低,但是性價比高,比純進口書籍便宜多了,少了一個數量級的價格
  •     怎麼說呢 為了論壇灌水 還是說點吧 我腳底下那貨說要買走 看到里面就不要了
  •     A GOOD INTRODUCTION OF ***PUTATIONAL PHYSICS, USING JAVA.
  •     專業人士選的,應該可以吧。
  •     物流慢,書破了,失望。。。
  •     寶貝,好好看看,覺得挺好